A generalization of the construction of the class operator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 274723
(http://iopscience.iop.org/0305-4470/27/13/046)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:29

Please note that terms and conditions apply.

Corrigenda

A generalization of the construction of the class operator

 Ortowski A and Strasburger A 1994 J. Phys. A: Math. Gen. 27 167-751. The following two inaccuracies in the text should be corrected. The remaining results and conclusions are not influenced by those changes.
(a) The set Λ_{e} appearing on page 172 should be defined as

$$
\Lambda_{e}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in \mathbf{R}^{3} \mid \sqrt{t_{1}^{2}+t_{2}^{2}+t_{3}^{2}}=2 k \pi, k \in \mathbf{Z}\right\} .
$$

(b) On page 172, the paragraph beginning with 'For the case of the character $\chi_{s} \ldots$ ' and ending with the displayed formula for $\chi_{s}(g(\theta))$ should be replaced by the following text:
For the case of the irreducible representation $\left(T_{s}, V_{s}\right)$ of $S U(2)$ of dimension $2 s+1$ with an integer s, we have (recalling the expression for the character $\chi_{s}(g), g=g(\phi, \theta, \varphi)$, in terms of the Euler parameters ϕ, θ, φ; see [10], chapter III, §7)

$$
\frac{1}{4 \pi} \int_{-2 \pi}^{2 \pi} \chi_{s}(\phi, \theta, \varphi) \mathrm{d} \varphi=P_{s}(\cos \theta)
$$

where P_{s} is the Legendre polynomial of degree s. Thus we have

$$
\begin{align*}
T_{j}\left(\overline{\chi_{s}} ; g(\psi)\right) & =\frac{1}{16 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{-2 \pi}^{2 \pi} \overline{\chi_{s}}(g(\phi, \theta, \varphi)) T_{j} \exp \left(\mathrm{i} \frac{\psi}{2} n(\theta, \phi) \cdot \sigma\right) \sin \theta \mathrm{d} \varphi \mathrm{~d} \theta \mathrm{~d} \phi \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} P_{s}(\cos \theta) T_{j} \exp \left(\mathrm{i} \frac{\psi}{2} n(\theta, \phi) \cdot \sigma\right) \sin \theta \mathrm{d} \theta \mathrm{~d} \phi \tag{13}
\end{align*}
$$

2. The final version of the paper was written when the first named author (AO) was at Arbeitsgruppe 'Nichtklassische Strahlung' der Max-Planck-Gesellschaft an der HumboldtUniversität zu Berlin.

Two electrons in a homogeneous magnetic field: particular analytical solutions

 Taut M 1994 J. Phys. A: Math. Gen. 27 1045-55In the caption to figure $2, ~ ' 1 / \tilde{\omega}_{r}=2904.617$, and 29312.4 ' (i.e. two numbers) should read ' $1 / \tilde{\omega}_{r}=2,904.617$, and 29312.4 ' (i.e. three numbers).

Also, the caption to table 1 contains a misprint, and a portion of the data in the table (from $n=10, N_{r}=0$ to $n=14, N_{r}=0$) was omitted. The correct table reads:

